iedge
  • iedge
スマートホーム(スマートハウス)の記事
2019.03.15
2019.11.25

人工知能(AI)とは何か?AIでできること、医療との関係、人間の仕事が奪われる未来は訪れる?

記事ライター:iedge編集部

人工知能やAIという言葉を聞いたことはあっても、その意味を正しく理解している方は決して多くありません。企業や団体においてAIを活用して業務効率を向上させる取り組みが徐々に増えていますが、プロジェクトの担当者自身もAIの知識が少なく、何から初めれば良いのか分からないというケースも聞こえてきます。

そこで今回は、そもそもAIとは何なのか、AIにできることとできないこと導入事例なども含めて詳しく紹介していきます。今回の記事を最後まで読んでいただくことで、AIに関する基本的な知識や、身の回りでの活用のアイディアが得られるはずです。

 

人工知能(AI)とは何か?

AIの文字が表示されているタブレット端末

AIとは「Artificial Intelligence」の略称で、日本語に直訳すると「人工知能」という意味を指します。人間の言葉を理解する、画像や映像を認識する、予測を立てるなどといったように、あたかも人間の脳で何かを考えているような働きをするのがAIとされています。

実はAIという言葉が指す範囲は非常に広く、明確に定義されているものではありません。最近ではオフィスでの業務効率化を実現するためにRPA(Robotic Process Automation)が導入されたり、IBMが開発したコグニティブ・コンピューティングのような自然言語を理解して学習する仕組みのものも登場しています。

一般的にはこれらをすべて総称して「AI」とよばれることが多いのですが、実はそれぞれ得意なことと不得意なことがあります。

 

人工知能(AI)の歴史  過去から最新まで

AI、すなわち人工知能は、実は最近になって登場したものではありません。AIの歴史を紐解いていくと、その古い歴史が見えてきます。

AIには過去から現在に至るまで3回の大きな波がやってきています。どのような過程を経て現在の人工知能ブームに行き着いたのか、その変遷を詳しく見ていきましょう。

人工知能(AI)の誕生は1950年代

そもそもAIが誕生したのは今から60年以上前の1950年代にまで遡ります。当然のことながら当時のコンピュータの性能は決して高いものではありませんでした。

しかし、「ニューラルネットワーク」という人間の脳細胞の結合の仕組みに倣ってコンピュータに問題を解決させる研究が行われたり、対話型プログラムである「ELIZA」というシステムが開発されたりしたのもこの時代です。これは現在のSiriやGoogleアシスタントのようなシステムの基礎となった研究でもありました。

この時代の人工知能は単純な構造であったこともあり、複雑な問題解決には不向きで実用化には至りませんでした。そのため、この後しばらく冬の時代を迎えることになります。

知識ベースの人工知能

人工知能の誕生から30年あまり経った1980年代、AIにとって二度目のブームが到来します。コンピュータに知識を与えることで、より複雑な問題解決を実行できるようになりました。

コンピュータの性能も向上し、初期のAIに比べて実用化も不可能ではなかったのですが、問題となったのは知識のベースとなるデータ量でした。コンピュータ自らがデータを拾い集めることはできず、処理に必要なデータは人間の手によって収集しなければなりませんでした。

この頃はまだインターネットも登場していない時代であったため、人間の手によって集められるデータは限定的なものに過ぎません。そのため、当時のAIは一般的には普及せず、ごく一部の限られた専門的な分野において活用されたに過ぎませんでした。

ビッグデータを活用したディープラーニングの登場

三度目のAIのブームは2000年代後半から現在に至るまで続いています。第二次ブームにおいて課題であったデータ収集が効率的になったことが大きな理由として挙げられるのですが、その裏にはビッグデータとよばれるものがありました。

ビッグデータとはその名の通り、極めて大量のデータです。あらゆる分野においてデータを収集し、それをコンピュータが処理することによってさまざまな傾向が見えてきます。ビッグデータを取り込んだコンピュータがみずから学習し、従来のように細かなプログラミングをしなくても最適な処理が可能になりました。

このように、コンピュータがみずから学習していくことを「ディープラーニング」とよんでいます。

機械学習と深層学習(ディープラーニング)とは?

機械学習とディープラーニングのイメージ画像

人工知能を知るうえで切っても切り離せないのが「機械学習」と「深層学習」です。深層学習は別名「ディープラーニング」ともよばれ、ここ数年で大きな注目を集めています。それぞれの特徴や違いについて紹介していきましょう。

機械学習とは

機械学習とは人間がコンピュータに対して何らかの指示を与え、一定を法則性を理解させる仕組みのことです。

例えば、デザインは同じで色違いの洋服があった場合に、色を見分けて写真を分類させるといったような学習方法です。身近な活用事例としては、スマートフォンの顔認証システムなどが代表的です。

深層学習(ディープラーニング)とは

深層学習とは機械学習の一部であり、より幅広い特徴をコンピュータがみずから把握します。たとえばスマートフォンの写真から特定の人物が映ったものだけを抽出したり、フォルダ別に分けるといったものは典型的なディープラーニングの仕組みです。

 次ページ >
AIの種類・特徴とは?

 

人工知能(AI)の種類

一口にAIといっても、実は処理をするものによってさまざまな種類に分けられます。

人間には視覚や聴覚、触覚といった感覚があるように、AIにも役割に応じた種類が存在します。AIに何らかの仕事をさせようとした際には、これらの役割を組み合わせながら仕事を組み立てていく必要があります。

まずはAIにどのような種類のものがあるのかを見ていきましょう。

①言語を司るAI

単語や文章の意味を把握したり、ときには文章を組み立てて作成することができるAIを指します。パソコンで打ち込んだ文章に誤字はないか、文法に間違いはないかなどを確認するといった用途が代表的です。

また、最近ではAIが文章を書いたり自然に会話できるようなシステムが登場していますが、いずれも言語を司るAIがなければ実現できないものなのです。キーボードで文字を打ち込む、声で話しかけるなど、インプットの方法はさまざまですが、どのような文章や会話を組み立てるのかを判断しているAIです。

②画像認識AI

モニターに映し出された画像やカメラに映ったモノなどを認識したり、画像を作成することができるAIもあります。たとえばカメラのオートフォーカスや顔認識機能などが代表的な例として挙げられるでしょう。

また、すでにある写真データをもとにイラスト風の画像を生成するスマホアプリなども一般的。スマホ以外の実例としては、年齢層や性別にマッチした広告を表示するようなデジタルサイネージなども画像認識AIとして挙げられます。

③音声認識AI

人間の耳や口に相当するAIです。音声を聞いて認識したり、スピーカーなどから音声を出力する際にも活用されています。身近な例としてはスマートスピーカーやSiri、Googleアシスタント、音声認識による文字入力などが挙げられます。

従来のコンピュータではキーボードやマウスなどが入力用インターフェースとして活躍してきましたが、音声認識AIの進化によって自然言語での入力も当たり前の時代になっています。AIのユーザビリティ向上という面から考えても、音声認識AIは重要な機能といえます。

④制御用AI

自動運転ロボットなど、物理的に何らかのアクションを起こす際に重要となるのが制御用AIです。人間が体を動かす際には脳から信号が伝達されていますが、この部分に相当するものといえます。

制御用AIは自動運転技術において必要不可欠なものであり、安全性に直結する要素でもあります。また、AIと関連の深いIoTやロボットといったジャンルにおいても、各種センサーやモーターを動かすための頭脳となります。

⑤思考を司るAI

これからのAIのなかでもっとも肝心なのが「考える」ということです。これまで紹介してきたAIの数々は、単体で動かしてもごく単純な役割しか果たすことができません。より人間に近い行動に近づけるためには、考えるということが必要不可欠です。

これまでのビッグデータを分析し、より最適と思われる事柄を提示することで人間に近いやり取りが行われます。身近な例としては、将棋やチェスの対戦、個人に合ったファッションコーディネートの提案など、これまでコンピュータでは不可能とされてきたものが考えるという思考を司るAIです。

 

「広義のAI(強いAI)」と「狭義のAI(弱いAI)」とは

AIのイメージ画像

AIの種類としてもう一点覚えておきたいのが、「強いAI」と「弱いAI」という言葉です。このワードを聞いただけではピンとこない方も多いと思いますが、AIの目的や特性によって分類することができます。

強いAIと弱いAI(つよいエーアイとよわいエーアイ、英: Strong AI and Weak AI)は、人工知能(AI)が真の推論と問題解決の能力を身につけられるか否かをめぐる論争において用いられる用語である。

引用元:wikipedia

「広義のAI(強いAI)」とは

強いAIとは「汎用型人工知能」ともよばれるものです。先述した「思考を司るAI」がより進化していくと、やがてAIは人間の頭脳と同等もしくはそれ以上の能力を発揮することになります。

すなわち、特定の仕事や作業といった用途に限定されることなく、さまざまな事柄について考え、処理することができるようになります。

汎用型という言葉の通り、特定の目的に限定されることなくさまざまな分野に応用できるのが「強いAI」とよばれるものです。

「狭義のAI(弱いAI)」とは

強いAIとは対照的に、ある特定の分野や仕事において活躍するのが弱いAIです。「特化型人工知能」ともよばれ、現在多くの企業が活用しているAIはこのタイプです。

名前こそ「弱いAI」といえども特定の作業や事務処理においてはプログラミングも容易で、現時点ではもっとも実用的なAIとして重宝されています。

このように、私たちにとって身近なIotやスマートホームなどで登場する、顔認識や情報収集・処理など特定の作業に特化したAIは「狭義のAI(弱いAI)」。人間の認知能力のすべてを必要としない程度のソリューションを行う機能の研究や実装を指します。

一方、「広義のAI(強いAI)」は人間の知能と同等またはそれ以上の働きをできるものと定義されており、こちらについては実現に向けて研究が続けられている状態です。つまり、現時点では人間と同等の機能を持ったAIは存在していないということです。

 次ページ >
AIとロボットの違い AIが出来ないこと

関連記事

NEW

Alexa(アレクサ)が怖い?アレクサの恐怖体験と怖い機能を紹介

ユーザーの生活が快適になるように、さまざまなサポートしてくれるアレクサですが、アレクサによって怖い思いをしたという体験談もあります。今回は、アレクサの怖い体験談をご紹介します。そして、アレクサがわざと ...

続きを見る
スマートホーム(スマートハウス)の記事 2022.05.26

たまごっちがスマートウォッチ化?たまごっちスマートの特徴を解説

たまごっちスマートとは、スマートウォッチの形をした新しいたまごっちです。 たまごっちスマートは、たまごっちが発売して25周年の節目である2021年11月23日に発売されました。 1996年に発売された ...

続きを見る
スマートホーム(スマートハウス)の記事 2022.04.22

Alexa(アレクサ)の設定方法を徹底解説!設定ができない場合の解決策も併せて解説

アレクサの初期設定の方法 アレクサの初期設定、いわゆるセットアップの方法をご説明します。 1.スマホにアレクサのアプリをインストールします。 2.アレクサはAmazonと連動しているので、アレクサを使 ...

続きを見る
スマートホーム(スマートハウス)の記事 2022.04.14

Qrio Smart Lockなら、鍵をシェアすることができて、スマホで解錠できる!

Qrio Smart Lockなら、まるで鍵を開けるかのようにスマホを操作するだけ Qrio Smart Lockは、スマートロックサービスです。 鍵をドアに設置する際の工事も不要です。鍵につけさえす ...

続きを見る
スマートホーム(スマートハウス)の記事 2019.11.28

これからのスマートホームには欠かせないAIについて知っておこう!

そもそもAIって何? AI(Artificial Intelligence=人口知能)は、人間が行う様々な作業や活動をコンピューターなどで模倣し、人間と同じような知能の実現を目的としたソフトウェアおよ ...

続きを見る
スマートホーム(スマートハウス)の記事 2019.11.28

人の感情に共感する次世代のAIロボット「JIBO」とは?

多くの可能性を秘めた新型AIロボット「JIBO」 JIBOは、アメリカのMIT(マサチューセッツ工科大学)のシンシア・ブリジール准教授により開発されました。 その後、2014年にIndiegogoのク ...

続きを見る
スマートホーム(スマートハウス)の記事 2019.12.03

Copyright© iedge , 2022 AllRights Reserved.